QSCI 381: Equation Reference Sheet

Tsering Sherpa

2025

Table 1: Probability Rules Summary

Rule	Expression / Condition			
Addition Rule	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$			
Mutually Exclusive Addition	If A and B are mutually exclusive: $P(A \cup B) = P(A) + P(B)$			
Multiplication Rule	$P(A \cap B) = P(A) \cdot P(B A) = P(B) \cdot P(A B)$			
Independence Rule	If $P(A \cap B) = P(A) \cdot P(B)$, then A and B are independent			
Independent Events	P(A B) = P(A) or $P(B A) = P(B)$			
Complement Rule	$P(A^c) = 1 - P(A)$			
Mutually Exclusive Definition	$P(A \cap B) = 0$			
Law of Total Probability	$P(B) = P(A) \cdot P(B A) + P(A^c) \cdot P(B A^c)$			
Bayes' Theorem	$P(A B) = \frac{P(A) \cdot P(B A)}{P(A) \cdot P(B A) + P(A^c) \cdot P(B A^c)}$			

Table 2: Counting Formulas and Factorials

Concept	Expression / Definition		
Permutations	${}_{n}P_{k} = \frac{n!}{(n-k)!}$		
Combinations	${}_{n}C_{k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$		
Factorial Values	$0! = 1$ (by definition), $1! = 1$, $2! = 2 \cdot 1 = 2$		
Factorial Definition	$n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1$		

Table 3: Summary of Means and Proportions

Concept	Formula	
Proportion	$p = \frac{x}{n}$	
Sample Mean	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	
Weighted Mean	$\bar{x} = \frac{\sum x_i w_i}{\sum w_i}$	
Frequency Mean	$\bar{x} = \frac{\sum x_i f_i}{\sum f_i}$	
Expected Value (Discrete)	$\mu = \sum_{i=1}^{n} x_i P(x_i)$	

Table 4: Summary of Variance and Spread

Concept	Formula		
Deviation	$D(x_i) = x_i - \mu$		
Sum of Squared Deviations	$SS = \sum_{i=1}^{n} (x_i - \mu)^2$		
Population Variance	$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$		
Sample Variance	$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$		
Variance (Discrete Distribution)	$\sigma^2 = \sum_{i=1}^n (x_i - \mu)^2 P(x_i)$		
Population Std. Deviation	$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$		
Sample Std. Deviation	$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$		
Coefficient of Variation	$CV = 100 \cdot \left(\frac{s}{\bar{x}}\right)$		

Table 5: Statistical Theorems and Inequalities

Rule / Theorem	Expression		
Sturges' Rule (Num. Classes)	$k = 1 + \log_2(n)$		
Sturges' Class Width	Class Width = $\frac{x_{\text{max}} - x_{\text{min}}}{1 + 1.44 \cdot \log_{10}(n)}$		
Chebyshev's Theorem	$P(X - \mu \ge k\sigma) \le \frac{1}{k^2}$		
z-score	$z = \frac{x - \mu}{\sigma}$		

Table 6: Summary of Common Distributions

Distribution	Mean	Variance	PDF	CDF
Discrete (generic)	$\sum x_i P(x_i)$	$\sum (x_i - \mu)^2 P(x_i)$	_	_
Binomial	np	np(1-p)	$\binom{n}{x}p^x(1-p)^{n-x}$	$P(X \le x) = \sum_{k=0}^{x} {n \choose k} p^k (1-p)^{n-k}$
Geometric	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$(1-p)^{x-1}p$	$P(X \le x) = 1 - (1 - p)^x$
Poisson	λ	λ	$\frac{\lambda^x e^{-\lambda}}{x!}$	$P(X \le x) = \sum_{k=0}^{x} \frac{\lambda^k e^{-\lambda}}{k!}$
Normal	μ	σ^2	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$P(X \le x) = \Phi\left(\frac{x - \mu}{\sigma}\right)$
Sampling Distribution of \bar{x}	μ	$\frac{\sigma^2}{n}$	_	_